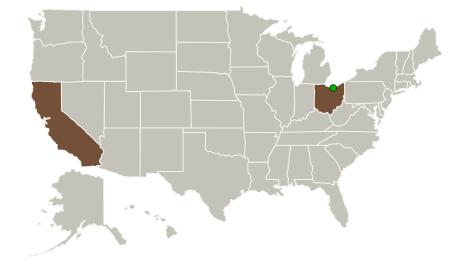
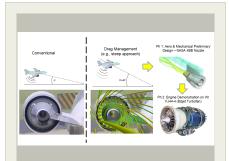
Deployable Engine Air-Brake for Drag Management Applications, Phase II




Completed Technology Project (2013 - 2015)

Project Introduction

ATA Engineering, Inc., (ATA) proposes a Phase II SBIR program to demonstrate an innovative engine air-brake (EAB) technology that uses a deployable swirl vane mechanism to switch the operation of a turbofan engine nozzle from a conventional mode to a "drag management" mode. Equivalent drag (via thrust reduction) results from the strong radial pressure gradient created by swirl vanes that are aerodynamically "invisible" during conventional operation and introduced during a drag management maneuver. Such "drag on demand" enables operational benefits such as slower, steeper, and/or aeroacoustically cleaner flight on approach, addressing NASA's need for active and passive control of aeroacoustic noise sources for conventional and advanced aircraft configurations. In Phase I ATA successfully designed an integrated vane-nozzle for a NASA high bypass ratio nozzle. To advance the technology readiness level (TRL), ATA has formed a partnership with Williams International (WI), a manufacturer of small jet engines and industry leader in the small business jet market. The ATA/WI team will apply the Phase I design approach to the WI FJ44-4 mixed flow turbofan which is selected as a demonstration test article to move the TRL to 5-6 by the end Phase II.

Primary U.S. Work Locations and Key Partners

Deployable Engine Air-Brake for Drag Management Applications Project Image

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	2
Images	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	3
Technology Areas	3
Target Destinations	3

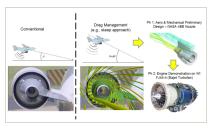
Small Business Innovation Research/Small Business Tech Transfer

Deployable Engine Air-Brake for Drag Management Applications, Phase II

Completed Technology Project (2013 - 2015)

Organizations Performing Work	Role	Туре	Location
ATA Engineering, Inc.	Lead Organization	Industry	San Diego, California
Glenn Research Center(GRC)	Supporting Organization	NASA Center	Cleveland, Ohio

Primary U.S. Work Locations	
California	Ohio


Project Transitions

July 2013: Project Start

October 2015: Closed out

Images

Project Image

Deployable Engine Air-Brake for Drag Management Applications Project Image (https://techport.nasa.gov/imag e/129832)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

ATA Engineering, Inc.

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

Program Manager:

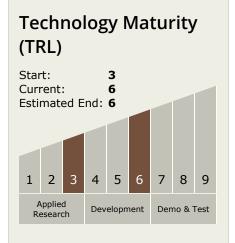
Carlos Torrez

Principal Investigator:

Parthiv N Shah

Co-Investigator:

Parthiv Shah



Small Business Innovation Research/Small Business Tech Transfer

Deployable Engine Air-Brake for Drag Management Applications, Phase II

Completed Technology Project (2013 - 2015)

Technology Areas

Primary:

- TX01 Propulsion Systems

 □ TX01.3 Aero Propulsion

 □ TX01.3.1 Integrated
 Systems and Ancillary
 Technologies
- **Target Destinations**

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

